skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Solberg, Fredrik Samdal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Our ability to produce human-scale biomanufactured organs is limited by inadequate vascularization and perfusion. For arbitrarily complex geometries, designing and printing vasculature capable of adequate perfusion poses a major hurdle. We introduce a model-driven design platform that demonstrates rapid synthetic vascular model generation alongside multifidelity computational fluid dynamics simulations and three-dimensional bioprinting. Key algorithmic advances accelerate vascular generation 230-fold and enable application to arbitrarily complex shapes. We demonstrate that organ-scale vascular network models can be generated and used to computationally vascularize >200 engineered and anatomic models. Synthetic vascular perfusion improves cell viability in fabricated living-tissue constructs. This platform enables the rapid, scalable vascular model generation and fluid physics analysis for biomanufactured tissues that are necessary for future scale-up and production. 
    more » « less
    Free, publicly-accessible full text available June 12, 2026